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Simple Entanglement Measure for Multipartite
Pure States
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A simple entanglement measure for multipartite pure states is formulated based on the
partial entropy of a series of reduced density matrices. Use of the proposed new measure
to distinguish disentangled, partially entangled, and maximally entangled multipartite
pure states is illustrated.
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Entanglement plays an important role in the theory of quantum information
and quantum computation (Bennett and DiVincenzo, 2000; Nielsen and Chuang,
2000). A major challenge that remains is how to define good measures of entan-
glement since simple measures that classify and quantify entanglement of a given
state should enhance our understanding of the phenomenon. Although, many mea-
sures of entanglement have been proposed (Abouraddy et al., 2001; Acin et al.,
2003; Audenaert et al., 2003; Barnett and Phoenix, 1993; Bennett et al., 1996;
Bennett et al., 2001; Chen, 1989; Coffman et al., 2000; Dür et al., 2000; Gal-
vao et al., 2000; Greenberger et al., 1989; Grover, 1997; Hill and Woottes, 1998;
Horodecki et al., 2000; Linden et al., 1999; Plenio and Vedral, 2001; Popescu et al.,
2001; Rains, 1999; Vedral and Plenio, 1998; Vedral et al., 1997; Vidal and Werner,
2002; Virmani and Pleino, 2000; Wong and Christensen, 2001; Wootters, 1998),
most involve extremizations that are difficult to manage analytically (Wootters,
1998).

There has been a lot of work on multipartite entanglement. For example,
Bennett et al. (2001) introduced exact and asymptotic measures for multipartite
pure state entanglement, in which a minimal reversible entanglement generating
set (MREGS) was defined. In Linden et al. (1999), reversibility of local trans-
formations of multipartite entanglement was studied. Relations between tripartite
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pure state entanglement and additivity properties of the bipartite relative entropy of
entanglement were established in Galvao et al. (2000). Upper and lower bounds to
the relative entropy of entanglement of multiparty systems in terms of the bipartite
entanglements of formation and distillation and entropies of various subsystems
were discussed in Plenio and Vedral (2001). Recently, the structure of a reversible
entanglement generating set for three-particle states were investigated in Acin et al.
(2003). In the connection with the logarithmic negativity discussed in Vidal and
Werner (2002), an operational interpretation of the logarithmic negativity has been
found (Audenaert et al., 2003). All these works help us to get better understandings
of the multipartite entanglement.

A good definition of an entanglement measure can be used to distinguish
entangled, partially entangled, and disentangled states, and this in turn should be
useful in understanding the extent those particles are entangled and how many ways
a multipartite system can be entangled. For a bipartite pure state, the problem has
been solved (Virmani and Pleino, 2000). In this case, an entanglement measure
can be defined in terms of the von Neumann entropy. However, the problem still
remains open for a system with more than three particles. The situation becomes
more difficult and unclear for mixed states. In the following, we will concentrated
on multipartite pure states, for which, as for the spin- 1

2 case, there are two degrees
of freedom with σ = 0 or 1 for each particle.

For a system of N such identical particles, any wavefunction |�〉 can be
expanded in terms of basis vectors |σ1, σ2, . . . , σN 〉 in the tensor product space
(V2⊗)N as

|�〉 =
∑

σ1...σN

Cσ1...σN |σ1, . . . , σN 〉, (1)

where σi = 0 or 1 for 1 ≤ i ≤ N and Cσ1...σN is the normalized expansion coeffi-
cient. The corresponding density matrix is

ρ� = |�〉〈�|. (2)

Let a†
iσ (aiσ ) with i = 1, 2, . . . , N , be particle creation (annihilation) operators

that satisfy

[aiσ , a†
jσ ′ ]± ≡ aiσ a†

jσ ′ ± a†
jσ ′aiσ = δi jδσσ ′ , (3a)

[aiσ , a jσ ′ ]± = [a†
iσ , a†

jσ ′ ]± = 0, (3b)

for spin- 1
2 fermions or 2-component bosons. The wavefunction |�〉 can be ex-

pressed as

|�〉 =
∑

σ1...σN

Cσ1...σN a†
1σ1

a†
2σ2

. . . a†
NσN

|0〉, (4)
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where |0〉 is the vacuum state. Under the replacement a†
iσi

→ Xiσi , where Xiσi is
simply a symbol, the operator form in front of the vacuum state on the right-hand-
side of Eq. (4) becomes a homogeneous polynomial of degree N in terms of the
{Xi },

FC (X1, . . . , XN ) =
∑

σ1...σN

Cσ1...σN X1σ1 . . . X NσN . (5)

It should be understood that Xi is a two-value symbol with Xi = Xi1 and Xi0. An
alternative definition of entangled states can be stated as follows: The state |�〉 is
an N -particle entangled state if the corresponding polynomials FC (X1, . . . , XN )
on complex field C cannot be factorized into the following form

FC (X1, . . . , XN ) = FA
(
Xi1 , . . . , Xim

)
FB

(
Xim+1 , . . . , XiN

)
(6)

for 1 ≤ m ≤ N − 1, where {i1 �= i2 �= . . . �= iN } can be in any ordering of {1, 2,
. . . , N }. Otherwise the state |�〉 is not an N -particle entangled state. The state |�〉
given in (4) is disentangled (separable) if the polynomials FC can be factorized into
a product of monomial of Xi as

∏N
i=1 FAi (Xi ). In other cases, the state is partially

entangled.
For N = 2, a criterion for distinguishing whether a homogeneous polynomial

is factorizable can be established by using the Von Neumann entropy of the reduced
density matrix. Furthermore, the degree of entanglement can be quantified by the
Von Neumann entropy with

S� = −Tr((ρ�)i Log2 (ρ�)i ) = −1

2
(Tr((ρ�)1Log2 (ρ�)1)

+ Tr((ρ�)2Log2(ρ�)2)), (7)

where i = 1 or 2, and (ρ�)i (i = 1 or 2) is the reduced density matrix with particle
2 or 1, respectiviely, traced out. This definition and the correspondence between
the factorizable (non-factorizable) case of (5) and a disentangled (entangled) state
given in (4) is well-known, which provides with a clear quantification of en-
tanglement for bipartite pure states. A state is separable if S� = 0, entangled if
S� �= 0, and maximally entangled if S� = 1. In (7), we have used the fact that
(ρ�)1 = (ρ�)2.

However, there will be many new features for N ≥ 3. Let (ρ�)(12...N−1) be
the reduced density matrix with the N -th particle traced out. There is a series of
reduced density matrices with N − 1 particles,{

QN−1
ω (ρ�)(12...N−1)

}
, (8)

where QN−1
ω is the left coset representative of the factor group SN /(SN−1 ⊗

S1), in which Sk is the permutation group, and ω is the normal ordered se-
quences (Chen, 1989). Let gi (i = 1, 2, . . . , N − 1) be generators of SN , which
are adjacent permutation of the i-th and (i + 1)-th particles. When N = 3, one
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has {Q2
1 = e, Q2

2 = g2, Q2
3 = g1g2}. Thus, one gets three two-particle reduced

density matrices (ρ�)(12), (ρ�)(13), and (ρ�)(23) according to (8). Consequently,
there will be a series of reduced density matrices with N − 2, N − 3, . . ., 1
particle(s), {QN−2

ωN−2
(ρ�)(12...N−2)}, {QN−3

ωN−3
(ρ�)(12...N−3)},. . ., {Q1

ω1
(ρ�)(1)}, where

QN−k
ωN−k

is the left coset representative of the factor group SN /(SN−k ⊗ Sk). For
N = 3, a complete set of reduced density matrices is {(ρ�)(12) , (ρ�)(13) , (ρ�)(23),
(ρ�)(1) , (ρ�)(2) , (ρ�)(3)}. It can be shown that the state |�〉 is not a genuine N -
particle entangled state if the Von Neumann entropy defined in terms of one of the
reduced density matrices in the series {QN−k

ωN−k
(ρ�)(12...N−k)} (k = 1, 2, . . . , N − 1)

is zero because the corresponding homogeneous polynomial (5) is, at least, par-
tially factorizable. Furthermore, unlike the N = 2 case, it can be verified that
values of the Von Neumann entropy of reduced matrices for N − k particles
with k = 1, 2, . . . , N − 1, are not the same for fixed k. For example, generally,
(ρ�)(12) �= (ρ�)(23) �= (ρ�)(13), and (ρ�)(1) �= (ρ�)(2) �= (ρ�)(3). In addition, it will
be shown later that the maximal entropy calculated from {Q1

ω (ρ�)(1)} may be less
than 1 when N ≥ 3.

Based on the above observations, we can defined a measure of genuine N -
particle entanglement η

(N )
� as follows:

η
(N )
� =




1

N

N∑
i=1

S(i) if QN−k
ωN−k

S(12...N−k) �= 0∀ ωN−k with 1 ≤ k ≤ N − 1,

0 otherwise,
(9)

where

S(12...N−k) = −Tr
(
(ρ�)(12...N−k)Log2(ρ�)(12...N−k)

)
(10)

is the partial Von Neumann entropy with the k particles traced out. The state
|�〉 is, at least, partially separable when one of the values of partial entropy
{QN−k

ωN−k
S(12...N−k)} is zero. In such case, the corresponding state is not a genuine N -

particle entangled state. Otherwise, we can quantify the measure using the average
one-particle reduced entropy defined in (9).

It is clear that (9) is zero for separable states. Furthermore, the entangle-
ment measure should be invariant under local unitary transformations, and its
expectation should not increase under local operations and classical communica-
tion (LOCC). In order to prove (9) satisfying the above requirements, we use the
conclusions made in Bennett et al. (2001). As has been noted in Bennett et al.
(2001), partial entropies have the nice property that for pure states their aver-
age does not increase under LOCC. The entanglement measure (9) is defined in
terms of the average one-particle reduced entropy. Therefore, its value should also
not increase under LOCC. In addition, since the measure (9) is defined in terms of
the average one-particle reduced entropy, its value should also be invariant under
any local unitary transformation.
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However, Eq. (9) does not tell us how many particles are disentangled from
one another and how many of them are still entangled, when some of the values
of the partial entropy {QN−k

ωN−k
S(12...N−k)} are zero. Actually, one need to calculate

all values of the partial entropy {QN−k
ωN−k

S(12...N−k)} to get the full picture. In the
following, as an example, we will apply the above definition of the entanglement
measure given by (9) for the 3-particle case. For N = 3, the complete basis space is
eight dimensional (2N = 8), of which the basis vectors are denoted as {|1〉 = |000〉,
|2〉 = |110〉, |3〉 = |101〉, |4〉 = |011〉, |5〉 = |111〉, |6〉 = |001〉, |7〉 = |010〉,
|8〉 = |100〉}. A general 3-particle state |�〉 can be expanded in terms of these
basis vectors with at most 8 terms. As a simple example, we assume a 3-particle
state |�〉 has three nonzero terms. There are 56 possible three-term linear com-
binations ((8

3) = 56) of these 8 basis vectors as listed in Table I, with 24 com-
binations being states with 2-particle entangled and disentangled with another
one. Therefore, those 24 states are partially entangled, and not genuine 3-particle
entangled states. The remaining 32 such combinations are genuine 3-particle en-
tangled states. In order to verify the effectiveness of the definition (9), we cal-
culate a series of reduced density matrices for two cases with |�〉 = |127〉 and
|123〉 given in the Table I. In the case of |127〉, the wavefunction can be written
as

|�〉 = α|000〉 + β|110〉 + γ |010〉, (11)

where α, β, and γ are nonzero complex numbers satisfying the normalization con-
dition. The corresponding diagonalized reduced density matrices

Table I. All possible 3-particle entangled states with 3 nonzero terms.

Case I
|127〉 |128〉 |136〉 |138〉 |146〉 |147〉 |167〉 |168〉
|178〉 |235〉 |238〉 |245〉 |247〉 |257〉 |258〉 |278〉
|345〉 |346〉 |356〉 |358〉 |368〉 |456〉 |457〉 |467〉

Case II
|123〉 |124〉 |125〉 |126〉 |134〉 |135〉 |137〉 |145〉
|148〉 |156〉 |157〉 |158〉 |234〉 |236〉 |237〉 |246〉
|248〉 |256〉 |267〉 |268〉 |347〉 |348〉 |357〉 |367〉
|378〉 |458〉 |468〉 |478〉 |567〉 |568〉 |578〉 |678〉

Note. There are 24 one-particle separable states (Case I) and 32 genuine 3-
particle entangled states (Case II). The symbol |i jk〉 means that the state is
a linear combination of the i-th, j-th, and k-th basis vectors defined in the
text.
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are

(ρ)(12) =
(

0
1

)
,

(ρ)(13) = (ρ)(23) =
( 1

2 (1 −
√

1 − 4|α|2|β|2)
1
2 (1 +

√
1 − 4|α|2|β|2)

)
,

(ρ)(1) = (ρ)(2) = (ρ)(13), (ρ)(3) = (ρ)(12). (12)

Therefore, the corresponding values of partial entropy are S(12) = 0, S(13) = S(23) �=
0, S(1) = S(2) �= 0, and S(3) = 0. The values of entropy S(3) = S(12) = 0 indicate that
in this case particle 3 is disentangled from particle 1 and 2, while the values of
entropy S(1) = S(2) �= 0 indicate that particle 1 and 2 are still entangled. According
to definition (9), therefore, the 3-particle state |127〉 is not a genuine 3-particle en-
tangled state. When |�〉 = |123〉, the corresponding diagonalized reduced density
matrices are

(ρ)(3) = (ρ)(12) =
( |α|2 + |β|2

|γ |2
)

,

(ρ)(2) = (ρ)(13) =
( |β|2

||α|2 + γ |2
)

, (13)

(ρ)(1) = (ρ)(23) =
( |α|2

|β|2 + |γ |2
)

.

Hence, the corresponding values of partial entropy are all nonzero, which in-
dicate that the state |123〉 is a genuine 3-particle entangled state. In this case,
the values of reduced entropy (S)(i) for i = 1, 2, 3 are not the same in gen-
eral. To maximize (9) with the results given in (13) and the constraint |α|2 +
|β|2 + |γ |2 = 1, one finds that S(i) = 0.918296 for i = 1, 2, 3. Up to a phase
factor, the corresponding coefficients are |α| = |β| = |γ | = 1√

3
, which gives the

maximally entangled 3-particle state with 3 terms. Actually, this state belongs
to the W -state family (Dür et al., 2000). The reduced entropy S(i) is differ-
ent from that of two-term GHZ-state case (Greenberger et al., 1989), in which
S(i) = 1. It has been verified that the definition (9) is indeed invariant under any
local unitary transformation. This procedure enabled us to analyze all possible
3-particle entangled pure states with at most 8 terms. The detailed results will
be reported elsewhere. The generalization to multipartite entangled pure states is
straightforward.

In summary, we have formulated a simple entanglement measure for multi-
partite pure states based on partial entropy of a series of reduced density matrices.
The new definition seems suitable to distinguish from disentangled, partially en-
tangled, and maximally entangled multipartite pure states. However, entanglement
measure of a multipartite mixed state is much more difficult to be defined than that
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of a multipartite pure state studied in this paper. Much work remain to be done for
multipartite mixed states.
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